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BACKGROUND: Mediation analysis is used in epidemiology to identify pathways through which exposures influence health. The advent of high-
throughput (omics) technologies gives opportunities to perform mediation analysis with a high-dimension pool of covariates.

OBJECTIVE:We aimed to highlight some biostatistical issues of this expanding field of high-dimension mediation.
DISCUSSION: The mediation techniques used for a single mediator cannot be generalized in a straightforward manner to high-dimension mediation.
Causal knowledge on the relation between covariates is required for mediation analysis, and it is expected to be more limited as dimension and system
complexity increase. The methods developed in high dimension can be distinguished according to whether mediators are considered separately or as a
whole. Methods considering each potential mediator separately do not allow efficient identification of the indirect effects when mutual influences exist
among the mediators, which is expected for many biological (e.g., epigenetic) parameters. In this context, methods considering all potential mediators
simultaneously, based, for example, on data reduction techniques, are more adapted to the causal inference framework. Their cost is a possible lack of
ability to single out the causal mediators. Moreover, the ability of the mediators to predict the outcome can be overestimated, in particular because
many machine-learning algorithms are optimized to increase predictive ability rather than their aptitude to make causal inference. Given the lack of
overarching validated framework and the generally complex causal structure of high-dimension data, analysis of high-dimension mediation currently
requires great caution and effort to incorporate a priori biological knowledge. https://doi.org/10.1289/EHP6240

Introduction
Mediation analysis is used to help in deciphering mechanisms that
relate causes to their consequences. It has been used in many areas
of research, including, for example, social psychology, to under-
stand which factors can bridge the gap between intentions and
behaviors; cognitive psychology, to analyze how information is
transformed into a response; in intervention research, to assess
whether an intervention on a specific factor can trigger a positive
outcome; or in epidemiology, to quantify to what extent the total
effect of a given (environmental or genetic) factor on a health or bio-
logical outcome is explained by a so-called indirect effect, through
intermediate (e.g., biological) variables on the pathway between ex-
posure and outcome (MacKinnon et al. 2007; VanderWeele 2015,
2016). In environmental epidemiology, for example, it could help in
quantifying to what extent air pollution affects respiratory health
through oxidative pathways (Romieu et al. 2004).

With the advent of high-throughput screening technologies,
there are settings in which one aims to perform mediation analysis
with high-dimension data, that is, a data set in which the number
of potential mediators p is larger than the number of observations
n. For example, in environmental epigenetics, there is increasing
evidence that specific environmental exposures such as atmos-
pheric pollutants exposure could influence DNA methylation
(Abraham et al. 2018; Gruzieva et al. 2017), which is currently

typically assessed using chips measuring methylation in 105–106
cytosine-phosphate-guanine (CpG) dinucleotide sites on the ge-
nome. Given the role of DNA methylation in gene expression and,
consequently, health, methylation at multiple CpG sites could con-
tribute to (high dimension) mediation of the effects of atmospheric
pollutants on health. High-dimension mediation also may be rele-
vant to analyses of other types of omics data, such as genomic,
transcriptomic, metabolomic, and microbiota data.

From a statistical viewpoint, such analyses considering a high-
dimension set of potential mediators raise challenges; in particular,
approaches used in the case of a single mediator cannot be extended
to higher dimensions in a straightforward way. After briefly review-
ing the classical case of mediation in a low-dimension setting, we
will discuss the issues of mediation analysis with a high-dimension
set of covariates and of quantification of the mediated effects, men-
tioning some of the existing statistical tools, in particular, with
regard to applications in environmental epidemiology.

Discussion
Mediation analysis was developed as path analysis in the genetic
field, and later in the area of social sciences, and then further for-
malized in biomedical research in connection with regression
modeling in the counterfactual outcome framework of causal in-
ference. For a detailed presentation in the context of causal infer-
ence, the reader can refer to Chapters 2 and 5 of VanderWeele
(2015), or other sources (Imai et al. 2010; VanderWeele 2016).

If one assumes that a part of the effect of exposure E on out-
come Y is mediated by mediatorM (Figure 1), then the proportion
of the association between E and Y that occurs through M is
termed the indirect (or mediated) effect of E. The fraction of the
effect of E that occurs independently of M (represented by the
direct arrow from E to Y in Figure 1) is called the direct effect.
The addition of the direct and indirect effects is termed the total
effect.

Mediation with a Single Mediator
Assuming that both Y and M are continuous variables, with fur-
ther assumptions on the distribution of the error term, one can
write several linear regression models:
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One model relating the exposure E to the outcome Y taking M
into account is as follows:

EðYÞ= h0 + h1E+ h2M+ h3EM+ h4C

ðExposure–outcomemodelÞ (1)

Where E is the mathematical expectation, E is the exposure
variable, C is a matrix including all potential confounders of the
exposure–outcome, exposure–mediator, and mediator–outcome
associations (i.e., C1, C2, and C3 in Figure 1), EM is the
exposure–mediator interaction term, and h0, . . . , h4 are the esti-
mated parameters.

One regression model relating the exposure to the mediator is
as follows:

EðMÞ= b0 +b1E+ b2C
0 ðExposure–mediatormodelÞ

(2)

where C0 represents the confounders for the exposure–mediator
association.

In this linear model setting, one can define the controlled
direct effect, corresponding to the average change in the outcome
for an increase by one in exposure, assuming that the mediator
remains fixed at a given value identical in all subjects. In contrast,
the natural direct effect corresponds to the average change in the
outcome for an increase by one in exposure, assuming that the
mediator level does not vary and is set in each subject at the value
it would have in the absence of exposure. In the simpler case of
lack of interaction between the exposure and the mediator
(h3 = 0), the controlled direct effect and the natural direct effect
are identical. The natural indirect effect is defined as the average
change in outcome, under a given fixed exposure, when the medi-
ator level changes to the level it would have attained if the expo-
sure had increased by one.

The estimation of direct and indirect effects requires several
assumptions: a) a lack of exposure–outcome confounding (i.e., in
the example of Figure 1, efficient adjustment for C1) and b) a
lack of mediator–outcome confounding (efficient control for C3).
These are the only conditions required for the estimation of the
controlled direct effect.

Two additional assumptions, required for the identification of
natural direct and indirect effects, are c) a lack of uncontrolled ex-
posure–mediator confounding and d) the lack of mediator–out-
come confounder affected by the exposure. Under these
hypotheses, and that of the absence of exposure–mediator inter-
action (h3 = 0), h1 provides an estimate of the direct effect of E
on Y, whereas the product h2b1 is an estimate of the indirect
effect through M. This product is used in the Sobel mediation
test, whose null hypothesis is H0:h2b1 = 0.

This corresponds to a composite null hypothesis (Baron and
Kenny 1986; MacKinnon et al. 2002), implying both h2 and b1.
It can be handled either by testing for the product h2b1 being
null, corresponding to a product significance test, or by testing
separately for both h2 and b1 being null, which is termed a joint
significance test.

Mediation with Multiple Mediators
VanderWeele and Vansteelandt (2014) and VanderWeele (2015)
have discussed the expansion of mediation analysis to the case of
several mediators M1, . . ., Mp, where p is much lower than n.
One option is to consider each mediator independently and to fit
one exposure–outcome model (Equation 1) and one exposure–
mediator model (Equation 2) for each mediator M1, . . ., Mp. This
approach works fine as long as there is no mediator Mi influenc-
ing another mediator Mj and no mediator–mediator interaction. If
an influence of one mediator over another exists, the abovemen-
tioned assumption of the lack of confounding of the mediator–
outcome association by a factor influenced by exposure no longer
holds. Indeed, in the situation of Figure 2 in which mediator M1
influences M2, if one considers solely mediator M2, then M1 acts
as a confounder of the relation between mediator M2 and out-
come Y influenced by E. Several approaches have been proposed
in a low-dimension setting to estimate direct effects in this case,
such as marginal structural modeling and structural mean models
(VanderWeele 2015).

An alternative to the mediator-by-mediator approach is to
treat all mediators as a whole (VanderWeele and Vansteelandt
2014). In this case, any possible influence between mediators
(such as that of M1 on M2), including interactions, can be

Figure 1. Example of the effect of a single exposure E whose effect on out-
come Y is mediated by a single mediator M. Exposure–outcome (C1), expo-
sure–mediator (C2) and mediator–outcome confounders (C3) need to be
controlled for. Adapted from VanderWeele (2015).

Figure 2. Example of mediation with two mediators M1 and M2 influencing
each other.
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ignored, as long as one is not interested in estimating path-
specific effects of sequential mediators. In practice, for a continu-
ous outcome, one can fit an outcome model without mediators:

EðYÞ= h
0
0 + h

0
1E+ h

0
3C (3)

and the following model for p mediatorsM1, . . . ,Mp:

EðYÞ= h0 + h1E+ h12M1 + h22M2 + � � � + hp2Mp + h3C, (4)

thus allowing us to estimate the indirect effect mediated by all medi-
atorsM1, . . . ,Mp as a whole by the difference h

0
1–h1. Causal inter-

pretation of this quantity depends on correct model specification and
lack of unmeasured confounding and of interaction, as in the single-
mediator case, so that C should include all exposure–outcome,
mediator–outcome, and exposure–mediator confounders.

A third option relying on inverse probability weighting has
been proposed that assumes exposure to be categorical, with few
categories (VanderWeele and Vansteelandt 2014). This approach
does not require models for the mediators, but a model predicting
the outcome as a function of exposure and the mediators is neces-
sary (VanderWeele and Vansteelandt 2014). Finally, estimating
so-called interventional (in)direct effects, which requires weaker
assumptions than identification of natural (in)direct effects, is
also an option (Vansteelandt and Daniel 2017). Bellavia et al.
(2019) have provided other examples of methods applied when
considering the mediating effects of (low-to-intermediate) chemi-
cal mixtures on health. We will now assume that the number of
mediators p is of the same or of a larger order of magnitude than
the number of observations (Figure 3).

Identification of Mediators in High Dimension
Generally, several issues need to be considered when trying to
translate the mediation analysis framework to the case of high-

dimension mediation. These issues relate to the knowledge about
the causal model underlying the data and, relatedly, the identifica-
tion of the mediators, to the correction for multiple testing, to the
consideration of composite tests, and to the estimation of the share
of the effect of the considered exposure explained bymediators.

The approach to mediation analysis as developed in the
framework of causal inference (VanderWeele 2015) makes the
assumption that the causal structure underlying the data is known
a priori, as opposed to inferred from the data. This means that
the directions of the relations between E, M, Y and all potential
confounders are known. However, a priori knowledge of the
causal structure is less likely to be available as the dimension of
the set of (potential) mediators increases, that is, as the biological
system considered becomes more complex. Moreover, as in
the low-dimension case, exposure–outcome, exposure–mediators,
and mediators–outcome confounders need to be identified and
controlled. In Table 1, we list different approaches proposed to
perform mediation analysis in a high-dimension setting.

Independent consideration of each potential mediator. One
technically relatively simple option has been to consider all poten-
tial mediators independently, in separate models. Küpers et al.
(2015) for example used a two-step approach consisting of detect-
ing associations between maternal smoking and genome-wide
methylation levels using an epigenome-wide association study
(corrected for multiple testing), and then performing a series of
mediation analyses of the maternal smoking effects on birth weight
mediated by each of the methylation hits (i.e., the potential media-
tors) identified in the first step. Such an approach makes among
other the strong assumptions of lack of correlation or interactions
between mediators, as discussed above for multiple mediators,
which is unlikely to hold in many settings. It is tempting to try con-
trolling for the potential mediators that may influence the mediator
considered in the second step, but unfortunately the tools classi-
cally used in low-dimension settings to control for confounding
(a priori identification of potential confounders and adjustment for
these factors based on a multiple regression model), cannot be
applied in a straightforward way when confounders need to be
identified from a high-dimension vector, unless knowledge of the
causal relations within the biological layer corresponding to medi-
ators is known a priori. Trying to identify the confounders in a
data-driven approach is challenging; indeed, in this setting, if some
correlation exists among the mediators, then univariate approaches
are expected to suffer from a high false detection rate, even when
multiple correction techniques are used. A simulation study aiming
to relate a large number of (weakly) correlated factors to a health
outcome showed that false discovery rate (FDR)-correction techni-
ques yielded false detection rates far higher than the expected value
of 5%, as a result of this correlation between disease predictors
(Agier et al. 2016), a situation thatmay also happenwhenmodeling
associations of candidate mediators with disease risk.

An approach related to that from Küpers et al. (2015), used to
identify if epigenetic marks mediate the relationship between ge-
notypes and disease status, considered the causal inference test
(CIT) (Liu et al. 2013). CIT is related to the Baron and Kenny
(1986) procedure in that it corresponds to a chain of mathemati-
cal conditions that must be satisfied to conclude that each poten-
tial mediator causally influences the outcome (Millstein et al.
2009). This approach can be seen as attempting to reconstruct the
whole causal structure underlying the data, but it does so consid-
ering each potential mediator separately, which, again, may be
challenging if there is correlation between mediators (Wang and
Michoel 2017).

Permutation tests for mediators. In the two abovementioned
approaches (Küpers et al. 2015; Liu et al. 2013), candidate medi-
ators are tested separately, paralleling genome-wide association

Figure 3. High-dimension mediation. Hypothesized relation between an ex-
posure E; a health outcome Y; an exposure–outcome confounder C1; a high-
dimension mediator M= ðMiÞi≤ p, where p is typically larger than the num-
ber of observations in the data set, an exposure–mediator confounder C2;
and a mediator–outcome confounder C3. Causal influences also exist among
the candidate mediators (here, Mj influences Mi). p is typically much larger
than the number of observations n in the data set.
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studies (GWAS). Boca et al. (2014) developed a permutation test
that allows controlling the family-wise error rate while testing a
large number of mediators, again under the assumption of a lack
of unmeasured confounding. Permutation tests account for the
underlying correlation between mediators and do not suffer from
the problem of the Bonferroni correction, which is increasingly
conservative as the correlation between mediators increases
(Boca et al. 2014).

Composite tests.Under specific hypotheses, several approaches
commonly used to test mediation, such as the product test, are overly
conservative (Barfield et al. 2017; MacKinnon et al. 2002). This
issue can be addressed by computing empirical p-values based on
bootstrapping, which provides an increased power to detect media-
tion for a given sample size (Barfield et al. 2017). Boca et al. (2014)
and Sampson et al. (2018) developed several statistical procedures,
which are implemented in the R package MultiMed, to increase the
power of such composite analyses when testing multiple mediators.
Huang (2018) developed a joint significance test in the context of
multiple mediators. Huang (2019) also leveraged the composite na-
ture of the null hypothesis to construct a new test statistic that is less
conservative than the Sobel test.

Empirical estimation of the null distribution. The limited
power of the Sobel test can also be viewed as related to wrong
assumptions regarding the theoretical null distribution. When a
test statistic assumes a given distribution under the null hypothe-
sis (e.g., a chi-squared distribution) while the real distribution

under the null hypothesis is modified (e.g., by unmeasured con-
founders), hypothesis testing and FDR-control procedures may
be invalidated (Devlin and Roeder 1999; Efron 2004; François
et al. 2016; Strimmer 2008). In a high-dimension setting, this
issue can be identified by displaying the distribution of p-values
or of z-scores (Efron 2004). Solutions have been reviewed in the
GWAS context and include empirical null distribution and
genomic inflation factors to calibrate p-values, that is, the correc-
tion of p-values in a way ensuring that their distribution is flat
under the null hypothesis (Efron 2004; François et al. 2016;
Strimmer 2008). We illustrate this in Figure 4. Simulations were
performed using the mediation model of Equation 4, assuming
that, of 5,000 putative mediators, 500 variables were involved
in the indirect path relating the exposure to the outcome. Raw
p-values of Sobel test testing for mediation (Figure 4, red histo-
gram) were shifted toward values closer to 1 compared with the
expected distribution, which is, a mixture of a uniform distribu-
tion and a distribution with an excess of small p-values. After
application of empirical null hypothesis testing techniques, the
(adjusted) distribution of p-values of the Sobel test (blue distri-
bution) became closer to the expected one.

Mediators considered as a whole. In the context of high-
dimension mediation, as outlined above with a few mediators, there
can be mutual influences between mediators. For example, in the
epigenetic field, the methylation level on one CpG site can influence
the methylation level of other CpG sites. This is the case for

Table 1. Overview of the approaches and models for high-dimension analysis reviewed.

Name of approach Reference Assumptions, method, comment

Separate consideration of the potential
mediators

Successive tests of association of the
potential mediators with the exposure
followed by the Sobel mediation test

Küpers et al. 2015 Approaches can be used to overcome the limited
power of the Sobel test. Assumes lack of uncon-
trolled confounders and mutual influences
between mediators.

Causal inference test Liu et al. 2013 Assumes lack of uncontrolled confounders.
Permutation test Boca et al. 2014; Sampson et al. 2018 Tests multiple putative mediators while controlling

the family-wise error rate. Replacing Bonferroni
correction with a permutation approach improves
statistical power (MultiMed R package).

Joint significance test Huang 2018 Separate tests of exposure–mediator and mediator–
outcome associations.

Test for a composite null hypothesis Huang 2019 Test statistic is derived by accounting for the com-
posite nature of the null hypothesis. It is less con-
servative than the Sobel test.

Simultaneous consideration of the potential
mediators

Inverse probability weighting approach VanderWeele and Vansteelandt 2014 More efficient if exposure is categorical with a small
number of categories. Can accommodate expo-
sure–mediator and mediator–mediator
interactions.

R package HIMA dimension reduction
approach

Zhang et al. 2016 Uses variable selection to reduce the number of
mediators (HIMA R package).

Joint test of a group of mediators Huang and Pan 2016 Component-wise testing to evaluate several media-
tors en bloc rather than testing the marginal con-
tribution of each individual mediator. Spectral
decomposition of the mediators.

Directions of mediations Chén et al. 2018 Builds linear combinations among the potential
mediators to construct polymediators.

Sparse principal component–based high-
dimension mediation analysis

Zhao et al. 2020 Dimension reduction of the potential mediators via
sparse principal component analysis.

Mediation analysis for composition data Sohn and Li 2019 Tests several mediators en bloc; well-suited for com-
positional data (i.e., proportions of a whole, as
can be the case for microbiome data).

Distance-based test for mediation analysis
(applied to microbiome data)

Zhang et al. 2018 Reduces multiple testing burden by using a distance-
based approach in which all mediators are tested
simultaneously. Implies the existence of a rele-
vant distance that can be used between mediators.

Global test for high-dimension mediation Djordjilović et al. 2019 Global approach for mediation to test simultane-
ously a group of mediators.
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alterations in the methylation of DNA-methyltransferase (DNMT)
genes, which may alter the level of methyltransferase enzymes,
which in turn impact the methylation of several other genes (Zhang
and Xu 2017). These relations among mediators can create con-
founding and hamper identification of mediators causally linked
with the health outcome when considering each mediator sepa-
rately (VanderWeele and Vansteelandt 2014). For example, in
Figure 3, if one tries to consider mediators separately, the propor-
tion mediated by Mj must be identified for the proportion medi-
ated by Mi to be properly quantified (VanderWeele 2015).
Identifying the mediator(s) responsible for this confounding bias
is, as discussed above, challenging in a high-dimension setting.

An alternative to the separate consideration of each candidate
mediator is to follow the logic of the approach highlighted above
for multiple mediators considering all (potential) mediators as a
whole. In this situation, a subtle understanding of the causal rela-
tions within the high-dimension mediators is not necessary and
only identification and control for confounders outside the set of
mediators is required. In particular, mutual influences or interac-
tions among mediators can be ignored in this setting, provided
one does not aim to identify specific causal mediator(s), or, in the
case of sequential mediators, the effect of a specific causal path.

When using classical (least squares or maximum likelihood
for logistic regression) estimators, the exposure–outcome regres-
sion model including all potential mediators (Equation 4) pro-
vides estimation of regression parameters with a prohibitively
large variance as p increases and reaches a fraction of n (Sur and
Candès 2019; Vittinghoff and McCulloch 2007). Once p is larger
than n, the model cannot be estimated by ordinary least squares
or maximum likelihood anymore. Instead, one of the multivariate
variable selection or dimension reduction techniques proposed to
relate high-dimension variables to one or a few unidimensional
variables can be used (Chadeau-Hyam et al. 2013). Several
approaches have been developed in this spirit, which we describe
below, starting with approaches relying on variable selection and
then presenting those related to dimension reduction.

High-dimension mediation based on variable selection.
Zhang et al. (2016) implemented in the R package HIMA a three-
step approach that, first, excludes candidate mediators that are
not strongly associated with the health outcome in an univariate
approach then, second, uses a regularized multivariate mediation
model allowing further restriction to a smaller group of mediators
whose mediation effect is tested in a last, third, step. A limitation
of this approach is that it assumes a lack of confounding or resid-
ual confounding, similarly to the abovementioned approaches
considering each mediator independently (to which it is actually
related). One way to overcome this would be to rely on iterative
sure independence screening (or ISIS) in the first step, which was
designed to cope with situations such as that of a covariate not
marginally associated with the outcome but related with it condi-
tionally on another covariate (Fan et al. 2009).

High-dimension mediation based on dimension reduction.
Another approach, called the directions of mediation, was used to
determine which brain locations mediate the relationship between
the application of a thermal stimulus and self-reported pain (Chén
et al. 2018). It does not attempt to identify truemediators but, rather,
seeks linear combinations of mediators that capture the mediators’
effect according to a criterion related to the ability to predict the out-
come and to be explained by exposure E. This approach is therefore
related to dimension reduction techniques such as (supervised) prin-
cipal component analysis (PCA). Relatedly, Huang and Pan (2016)
developed a test for mediation for high-dimension mediators
relying on spectral decomposition of the set of mediators, fol-
lowed by a series of univariate regression models with the inde-
pendent components. As an extension, Zhao et al. (2020)

introduced sparsity into the PCA-type analysis used by Huang
and Pan (2016).

Advantage can be taken of the nature of the layer of media-
tors. If, for example, a distance can be defined among the poten-
tial mediators, then it may be used to decrease the dimension of
the mediation layer. This approach has been applied to character-
ize to what extent the effect of diet on body mass index is medi-
ated by changes in the composition of the gut microbiota (Zhang
et al. 2018). Data on microbiota composition obtained from 16S
rRNA gene sequencing can be classified according to operational
taxonomic units, from which a distance based on DNA sequence
divergence (or distance of species in the phylogenetic tree) can
be calculated. Of course, here a central assumption relates to the
relevance of the proposed distance for the health outcome con-
sidered in the microbiota example that microbiota diversity, as
quantified from DNA sequence, influences the health outcome
considered. As discussed by Zhang et al. (2018), approaches
that accommodate different types of distances, without having
to a priori choose one of them, have been proposed.

All of these techniques are limited when it comes to the
causal interpretation: Indeed, these approaches will generally
allow identifying sets or combination of covariates with pre-
dictive power, which does not imply that they are the causal
agents.

Issues related to overfitting. Options to a priori reduce the
dimension of the mediators’ layer are all the more relevant because
of issues related to overfitting. Indeed, in the context of high-
dimension mediators, the ability of the mediators to predict the out-
come can be overestimated; this is all the more a concern because
many machine-learning algorithms tend to be optimized to increase
their predictive ability rather than their aptitude to make causal in-
ference (Hernán et al. 2019). Mistaking the predictive ability of a
model with its value for causal inferencemay lead to overestimating
the share of the mediated effect. For example, using an approach
such as the least absolute shrinkage and selection operator, or
LASSO, to relate the candidate mediators to the health outcome
may lead to a model with a very high predictive value owing to the
fact that the ability to predict a unidimensional variable increases
with the number of potential predictors, but whichmay include non-
causal predictors of the outcome among the candidate mediators
(Leng et al. 2006; Meinshausen and Bühlmann 2010). In order to
limit such overestimation of the estimated effect of the candidate
mediators on the health outcome, algorithms and strategies targeted
for counterfactual prediction and causal inference should be pre-
ferred over those favoring the model’s predictive ability. This will
be best achieved through some knowledge on the confounders exter-
nal to the set of mediators (which may be more easily a priori avail-
able than information on the relation among the potential mediators)
and on factors that are certainly not confounders of associations
between the exposure andmediators or outcome, such as those influ-
enced by exposure (Hernán et al. 2019). Purely statistical considera-
tions will also weight on the efficiency of a strategy in terms of
counterfactual inference; for example, maximizing the predictive
ability of a model may not be the most relevant choice, whereas try-
ing to maximize stability (Meinshausen and Bühlmann 2010) or
specificity is expected to be more favorable. Finally, approaches
relying on a targeted minimum loss estimator (TMLE), which pro-
vides efficient prediction while remaining in a causal inference
framework, are certainlyworth considering here (Lendle et al. 2013;
Zheng and van der Laan 2018).

Estimation of the Proportion of Effect Mediated
Measures of mediated effects are an expected output of mediation
analysis (MacKinnon et al. 1995). Again, translating in high
dimension the approach used with a single mediator is not
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straightforward. Some analyses with high-dimension mediators
may report mediated effects for each of the candidate marker,
which is not informative about the overall mediated effect
because single components of a set of high-dimension mediators
can have opposite effects (Küpers et al. 2015; Zhang et al. 2016).
In addition, because of correlation and interactions among media-
tors, the sum of the proportion mediated can be more than 100%
(VanderWeele and Vansteelandt 2014).

Alternatively, one might wish to estimate the global propor-
tion of effect mediated by all potential mediators considered
simultaneously. Insight may, again, be gained from the GWAS
field. In GWAS, methodological efforts have been devoted to
estimate how much of the population variability in a phenotypic
trait is explained by genetic variation among individuals. Some
statistical models to estimate the influence of genetic polymor-
phisms do not rely on identification of true causal markers but,
rather, assume a polygenic model where each marker has a (pos-
sibly) infinitesimal effect (Yang et al. 2011). Similarly, a polyme-
diator approach transposing this logic and considering mediators
as a whole could be applied: If one relied on one of the above-
mentioned approaches allowing one to build a linear combination
of the candidate mediators (Chén et al. 2018; Huang and Pan
2016), then the proportion mediated by this new (unidimensional)
variable could be estimated as in the single-mediator case. This
approach has been applied by Zhao et al. (2020), who relied on a

sparse PCA of the candidate mediators to identify a linear combi-
nation of parameters quantifying the activity of various brain
regions likely to mediate the effect of a learning task on reaction
time; they provided an estimate of the indirect effect.

Conclusion
The increasing interest for omics data and the role of epigenetic
marks, RNA, and protein levels or of the microbiota on disease
phenotypes make it very appealing to try to quantify to what
extent the effect of environmental (Bind et al. 2014), infectious,
behavioral, social (Huang 2018), or genetic (Liu et al. 2013) fac-
tors on health is mediated by these biological layers. As we dis-
cussed, generalizing mediation analysis techniques developed for
one or a few mediators to high-dimension mediation is not
straightforward. A key conceptual issue relates to the fact that
mediation analysis assumes a priori knowledge of the causal
relations between the exposure, the mediator, the outcome, and
confounders. In a high dimension, the causal relations between
all considered factors (e.g., among CpGs) is unlikely to be accu-
rately known a priori. It is optimistic to expect the causal struc-
ture to be unraveled by machine-learning techniques because
many models developed in data science tend to excel in predic-
tive ability but may be of more limited use in making causal in-
ference (Hernán et al. 2019), in particular in a context of a rather

Figure 4. Raw distribution of the p-values of the Sobel mediation test for 5,000 simulated variables that are putative mediators (in red, not uniform) and corrected
distribution (blue) after using the fdrtool package (R version 3.6.1; R Development Core Team). After correction, the distribution is closer to that expected under the
simulated causal model, which assumes the presence of mediators, so that one observes a mixture of a uniform distribution and a distribution with an excess of small
p-values. The distribution of the raw p-values should be uniform except for an excess of small p-values corresponding to true mediators. The fact that the (red) distri-
bution is not uniformmay indicate several deviations from the null model such as confounding factors or poor standardization of the test statistic. The red histogram
indicates that the Sobel test is too conservative (MacKinnon et al. 1995). Here we use the R package fdrtool that implements an empirical null distribution approach
to transform initial p-values to uniformly distributed p-values and that provides control of the false discovery rate (Strimmer 2008). To perform simulations, we con-
sider the mediation model of Equation 4, where there are 500 random mediators influenced by the environment that affect the simulated outcome according to
Equation 4. We considered 4,500 additional putative mediators distributed according to a multivariate distribution that did not depend on environment and outcome
(see code on GitHub https://github.com/mblumuga/opinion_mediation/blob/master/Simus_Sobel_FDR.R).
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limited number of training samples. TMLE represents a way to
try to accommodate both aims that is certainly worth further con-
sidering in a high-dimension context (Lendle et al. 2013).
Although we took the example of high-dimension mediators,
most of the issues discussed here also apply to problems in which
the mediators have an intermediate dimension (with p lower than
n but still relatively high), as would, for example, happen if
someone wished to quantify to what extent the association of
socioeconomic status and a health outcome is mediated by a set
of several hundred exposures assessed in a population of a few
thousand subjects.

The fact that we mostly discussed data-driven approaches
should not let the reader believe that this is the only way forward.
On the contrary, any effort to incorporate in models biological
knowledge should be undertaken. This may, for example, be done
by restricting analyses to a subset of genes with high a priori
plausibility for an effect on the outcome or by reducing the
dimension of the layer of potential mediators using a biologically
relevant distance, as is done for microbiote data, on the basis, for
example, of the phylogenetic distance between the microbiote
species (Zhang et al. 2018). Once such options have been consid-
ered and, if relevant, implemented, one may then turn to more
data-driven approaches.

High-dimension omics layers may have a complex and hard to
identify causal structure, for example, in the case of mutual influen-
ces among the mediators (CpG sites or protein levels). Such situa-
tions in which a mediator is also a confounder for the relation
between another mediator and the outcome influenced by the expo-
sure of interest are hard to handle rigorously considering eachmedi-
ator separately, and for such high-dimension omics layers, it is
unlikely thatmolecular biologywill soon unravel all causal relations
among all variables. Currently, approaches considering each poten-
tial mediator separately or treating the potential mediators as a
whole coexist. Issues identified in the (lowdimension) case ofmulti-
plemediators tend to indicate that approaches consideringmediators
as a whole (rather than individually) should be preferred with a
high-dimensionmediator (VanderWeele andVansteelandt 2014).

Issues less specific to high-dimension mediation analysis add
to the abovementioned issues; these include reverse causation
(Liu et al. 2013), measurement error in the exposure or in the me-
diator(s) (Valeri et al. 2017), and reliance on observational stud-
ies to test mediation (Richmond et al. 2014).

Data collection should generally be guided by power calcula-
tions, which are challenging in high-dimension mediation given
that the question of sample size requirements for mediation anal-
ysis is not even completely solved in a single-mediator setting
(VanderWeele 2015). Simulation studies prior to the design of a
new study should be considered but are challenging with com-
plex data structures; a few examples exist (Barfield et al. 2017;
Boca et al. 2014; Huang 2018).

Further extensions of the case that we discussed (Figure 3)
could be worth considering. First, we did not single out the multi-
mediator case with ordering, where there may be several succes-
sive ordered layers of potential mediators:

E ! M1 ! M2 ! . . . ! Mk ! Y, (5)

with eachM1, . . . Mk possibly being highly dimensional.
In addition, not only the mediator, but also the exposure, could

be multidimensional. This situation has been considered in a case–
control study considering the mediating role of DNAmethylation in
the association between genetic polymorphisms (assessed from a
genome-wide screening leading to about 300,000 genetic polymor-
phisms) and arthritis risk (Liu et al. 2013). Exposome studies in
which methylome or metabolome data are available can lead to a
similar data structure (Maitre et al. 2018). Further, the outcome could

bemultidimensional, corresponding to outcome- or diseasome-wide
studies (VanderWeele 2017). This would imply a move from the
rather simple three-variable systemcorresponding to the typical orig-
inal mediation framework (MacKinnon et al. 2007) to a much more
complex three-layer system. Finally, all these situations could be
combined, for example, in a study assessing in the same population
multiple layers of interconnected omics layers, from a large expo-
some to, for example, microbiota, methylome, transcriptome, pro-
teome, or diseasome data. There are descriptive tools for exploring
the relations within and between such layers, for example, in the lit-
erature referring to multimodal data, with approaches such as sparse
generalized canonical correlation analysis (Garali et al. 2018).
However, a rigorous causal analysis of such data, whose collection
on hundreds or thousands of subjects is now feasible (Maitre et al.
2018), would require knowledge on the causal relations between
(and possiblywithin) each data layer,whichmay, inmany situations,
be very difficult to attain. Inferring causal structure fromdatawithout
strong a priori is an expanding field of research (Scanagatta et al.
2019; Uusitalo 2007). The approaches initially used have tended to
have a complexity increasing at least exponentially with the number
of possible nodes in the causal diagram to infer, but alternatives have
been recently suggested that may make the problem tractable also in
high dimension (Zheng et al. 2018).

Omics platforms generate a huge amount of data, opening the
way for joint analysis of environmental exposures, intermediate
biological layers of data, and health outcomes. High-dimension
mediation analysis constitutes one promising framework to han-
dle such multiple layers of data in a causal inference framework;
however, it is still in its infancy and raises numerous challenges.
These challenges should be tackled by biostatisticians, biologists,
and epidemiologists in order to better understand the determi-
nants of health, to make efficient use of the data generated
beyond their use for prediction, and avoid making a data ceme-
tery out of the promised knowledge Eldorado (Hunter 2006).
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